两只股票之间的协方差(两股票的协方差)
内容导航:
Q1:协方差怎么计算,请举例说明
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好。
扩展资料
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:
从直观上来看,协方差表示的是两个变量总体误差的期望。
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的。
参考资料:百度百科协方差
Q2:股票的组合收益率,组合方差怎么求?
ρAB = - 0.8
Q3:某一股票与市场组合的协方差是什么意思?
方差描述了一组数列的波动情况,如果一个数列都是1种数,如1,1,1,1,1,1 那么它的方差为0
期望其实就是一组数的平均值
协方差是建立在方差分析和回归分析基础之上的一种统计分析方法
两个不同参数之间的方差就是协方差
相关系数r
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。
相关系数 又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;
γ的绝对值越大,相关程度越高。
两个现象之间的相关程度,一般划分为四级:
如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.75时,认为两个变量有很强的线性相关性。
相关系数的计算公式为:
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,
为因变量数列的标志值;■为因变量数列的平均值。
为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为:
其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为:
使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不
必再列计算表。
参考资料:百度百科
Q4:计算该股票平均收益率及协方差,急求!谢谢
用excel吧,其中日收益率等于每天股票价格的变化率。
算出两只股票的日变化率,然后用公式“covariance=”来计算协方差。
Q5:某一股票与市场组合的协方差是什么意思?
方差描述了一组数列的波动情况,如果一个数列都是1种数,如1,1,1,1,1,1 那么它的方差为0
期望其实就是一组数的平均值
协方差是建立在方差分析和回归分析基础之上的一种统计分析方法
两个不同参数之间的方差就是协方差
相关系数r
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。
相关系数 又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;
γ的绝对值越大,相关程度越高。
两个现象之间的相关程度,一般划分为四级:
如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.75时,认为两个变量有很强的线性相关性。
相关系数的计算公式为:
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,
为因变量数列的标志值;■为因变量数列的平均值。
为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为:
其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为:
使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不
必再列计算表。
参考资料:百度百科
Q6:投资组合标准差的公式怎么理解呀???
不知道现在答还有用不。。。
其实另外两个公式就是把双sigma公式展开合并下,都是逻辑简单费体力的代数变换。为了方便说明替换下,项目A=j=1,项目B=k=2,你写得'A'=W=权重。有一个关系是cov(r1,r2)=p(下角标1,2)*σ1*σ2,p是1和2的相关系数,σ1是1的标准差。
以你书上的为例n=2,原公式σp=∑1∑2(w1w2COV(r1,r2))。替换成有p的就是σp=∑j∑k(w1w2p12σ1σ2)。展开是个力气活,先展开第二个sigma(固定j按K=1~2求和),写出来再按j=1~2求和就好了。
两个投资组合双sigma公式展开后按你给的顺序,就是σp=w1w1p11σ1σ1+2*w1w2p12σ1σ2+w2w2p22σ2σ2。有了这个公式你的问题就简单了,你问的'1'就是p11就是项目A跟自己的相关系数,当然是1也就是100%了,p22同理。0.12方就是σ1σ1。两个项目比例相等都是50%,所以0.5比较多不过对照公式也好理解。这个展开后的公式按第一第二步设的那堆东西改写下就是σp=A^2+B^2+2*X*A*B了。
三个的投资组合同理代入展开就好了,只是n=3,多了个C=w3σ3需要考虑。这里就是数学统计工具在投资学上的应用,理解了前面风险度量的原理和目的,其他全是数学。
Q7:股票的组合收益率,组合方差怎么求?
ρAB = - 0.8
本文由锦鲤发布,不代表本站立场,转载联系作者并注明出处:/showinfo-3-117670-0.html