看涨期权看跌期权平价定理图形(看涨期权价格计算)
内容导航:
Q1:期权的平价公式如何推导
if C-P+K<F long call short put
if C-P+K?F short call long put
Q2:根据Black-Scholes公式和看涨-看跌期权平价关系推导看跌期权的定价公式。
1、看涨期权推导公式:
C=S*N(d1)-Ke^(-rT)*N(d2)
其中
d1=(ln(S/K)+(r+0.5*б^2)*T/бT^(1/2)
d2=d1-бT^(1/2)
S-------标的当前价格
K-------期权的执行价格
r -------无风险利率
T-------行权价格距离现在到期日(期权剩余的天数/365)
N(d)---累计正态分布函数(可查表或通过EXCEL计算)
б-------表示波动率(自己设定)
2、平价公式
C+Ke^(-rT)=P+S
则P=C+Ke^(-rT)-S
=S*N(d1)-S - Ke^(-rT)*N(d2) + Ke^(-rT)
=S*[N(d1)-1] + Ke^(-rT)*[1-N(d2)]
=Ke^(-rT)*N(-d2) - S*N(-d1)
以上纯手工打字,望接纳,谢谢!
Q3:求如何证明 欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为:看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)
Q4:写出欧式看涨期权和看跌期权平价公式并给出证明
C+Ke^(-rT)=P+S0
平价公式是根据无套利原则推导出来的。
构造两个投资组合。
1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。
2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。
看到期时这两个投资组合的情况。
1、股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。投资组合2,放弃行使看跌期权,持有股票,股价为St。
2、股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3、股价等于K:两个期权都不行权,投资组合1现金K,投资组合2股票价格等于K。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。根据无套利原则,两个价值相等的投资组合价格一定相等。所以我们可以得到C+Ke^(-rT)=P+S0。
Q5:写出欧式看涨期权和看跌期权平价公式并给出证明
C+Ke^(-rT)=P+S0
平价公式是根据无套利原则推导出来的。
构造两个投资组合。
1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。
2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。
看到期时这两个投资组合的情况。
1、股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。投资组合2,放弃行使看跌期权,持有股票,股价为St。
2、股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3、股价等于K:两个期权都不行权,投资组合1现金K,投资组合2股票价格等于K。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。根据无套利原则,两个价值相等的投资组合价格一定相等。所以我们可以得到C+Ke^(-rT)=P+S0。
Q6:求计算看涨期权的内在价值和时间价值。
还是100股,不过执行价格为19元,应该是这样
Q7:计算看跌期权的价值
买入看跌期权:看跌期权买方拥有以执行价格出售股票的权利。
公式: 多头看跌期权到期日价值=Max(执行价格-股票市价,
多头看跌期权净损益=多头看跌期权到期日价值-期权成本
在给你举个例子
投资人持有执行价格为100元的看跌期权,到期日股票市价为80元,他可以执行期权,以80元的价格购入股票,同时以100元的价格售出,获得20元收益。如果股票价格高于100元,他放弃期权,什么也不做,期权到期失效,他的收入为零。
希望你能看懂,呵呵,也同时希望我的意见能被采纳。。。
本文由锦鲤发布,不代表本站立场,转载联系作者并注明出处:/showinfo-4-221047-0.html