利率期权估值(利率债基金排名)
内容导航:
Q1:什么叫欧式期权定价,什么叫美式期权定价,什么叫二叉树期权估值,这三者的联系与区别是什么?
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
中文名
期权定价模型
简 称
OPM
创始人
布莱克与舒尔斯
创立时间
20世纪70年代
Q2:期权估值模型建立对冲组合为什么是购买0.5股股票
买20股能赚多少钱?港股的手续费都不够吧
Q3:绝对估值法的绝对估值法的分类介绍
绝对估值法也是常用的估值方法,主要有两种方法:一是现金流贴现定价模型估值法;二是B—S期权定价模型估值法(主要应用于期权定价、权证定价等)。 贴现现金流模型是运用收入的资本化定价方法来决定普通股票的内在价值。按照收入的资本化定价方法,任何资产的内在价值都是由拥有这种资产的投资者在未来时期中所接受的现金流所决定的。由于现金流是未来时期的预期值,因此必须按照一定的贴现率返还成现值,也就是说,一种资产的内在价值等于预期现金流的贴现值。对于股票来说,这种预期的现金流即在未来预期支付的股利,因此,贴现现金流模型的公式为:
V=D1(1+k)1+D2(1+k)2+D3(1+k)3+…=∑∞t=1Dt(1+k)t
式中:Dt为在时间T内与某一特定普通股相联系的预期的现金流,即在未来时期以现金形式表示的每股股票的股利;k为在一定风险程度下现金流的合适的贴现率;V为股票的内在价值。
在运用上述公式决定一般普通股票的内在价值方面存在着一个困难,即投资者必须预测所有未来时期可能支付的股利。通常使用无穷大的时期作为股票的生命周期,由于未来时期的不确定性,在预测未来时期的股利流时要做一些假定。通常假设股利支付的增长率为g,那么t时点的股利为: Dt=Dt-1(1+g)=D0(1+g)t。
用Dt=D0(1+g)t置换Dt,得出:V=∑∞t=1D0(1+g)t(1+k)t=D0∑∞t=1(1+g)t(1+k)t。
如果g=0,我们得到零增长模型:V=D0/k0;
如果g>0,我们得到不变增长模型:V=D0(1+g)k-g,k>g0;
如果g1≠g2,我们可以得到分阶段增长模型,即多元增长模型。
在这个方程里,假定在所有时期内,贴现率都是一样的。由该方程我们可以引出净现值这个概念。净现值等于内在价值与成本之差,即:
NPV=V-P=∑∞t=1Dt(1+k)t-P
式中:P为在t=0时购买股票的成本。
如果NPV>0,意味着所有预期的现金流入的净现值之和大于投资成本,即这种股票值被低估,投资者可以购买这种股票。
如果NPV<0,意味着所有预期的现金流入的净现值之和小于投资成本,即这种股票值被高估,投资者最好不要购买这种股票。
在了解了净现值之后,我们便可引出内部收益率这个概念。内部收益率就是使投资净现值等于零的贴现率。如果用k*代表内部收益率,则有:
NPV=V-P=∑∞t=1Dt(1+k*)t-P=0
所以: P=∑∞t=1Dt(1+k*)t
由方程可以解出内部收益率k*。把k*与具有同等风险水平的股票的必要收益率(用k表示)相比较:如果k*>k,意味着这种股票可以购买;如果k*<k,投资者最好不要购买这种股票。 期权是一种金融衍生证券,它赋予其持有者在未来某一时期或者这一时刻之前以合同规定价格购买或出售特定标的资产的权利。期权的标的可以是一种实物商品,也可以是公司股票、政府债券等证券资产。
根据不同的分类标准,期权分为不同的种类:按买卖方向划分,期权可分为看涨期权、看跌期权、双向期权;按执行方式划分,期权可分为美式期权、欧式期权;按结算方式划分,期权可分为证券结算和现金结算;按复杂性划分,期权可分为标准期权和奇异期权。
B—S模型是Black和Scholes合作完成的。该模型为包括期权在内的金融衍生工具定价问题的研究开创了一个新的时代。该模型不仅在理论上有重大创新,而且也具有极强的应用价值。
(1)B—S模型的假设条件。金融资产收益率服从对数正态分布;在期权有效期内,无风险利率和金融资产收益变量是恒定的;市场无摩擦,即不存在税收和交易成本;金融资产在期权有效期内无红利及其他所得;该期权是欧式期权。
(2)B—S模型的定价公式。Black和Scholes在1972年解出了欧式期权的经典定价公式,如下:
不分红的欧式买权(以C代表不分红的欧式买权的价格)公式为:
C=SN(d1)-(Xen)N(d2)
式中d1和d2分别为:
d1=Ln(SX)+(r+12σ2)tσt
d2=d1-σt
这其中,N为正态分布变量的筹资概率函数;S代表股票的当前价格;X代表期权的实施价格或称执行价格(Exercise Price),即允许期权所有者在该价格水平上购买(或者在卖方期权情况下卖出)股票;t代表期权的时效,期权的时效越长,期权的持有者就会接受到更多的信息,因而期权也就越有价值;r代表同期的无风险利率,σ代表股票价格的波动率(Volatility)。
不分红的欧式卖权(以P代表不分红的欧式卖权的价格)公式为:
P=C+Xen-S
(3)无套利定价原则。这是衍生品定价的基础原则。所谓的无套利定价原则,就是在一个有效的市场中,任何一项金融资产的定价应当使得利用该项资产进行套利的机会不复存在。衍生产品的定价和套利策略密不可分,给定衍生品的一个价格,只要能够找到可以套利的策略,那么该定价就不是合理的价格。如果市场不能够再找到任何的套利机会,则说明该定价是一个合理的定价。
我们举个例子:
C=3t=1x=18d=0r=10%S0=20
这个期权的定价是否存在套利机会呢?我们可以构造如下简单的组合:卖出一份股票,然后买入一份买权,多余的资金买入相同年限的无风险债券。该组合初始投入为零。
买权到期时组合的收益情况:
如果,St≥x,执行期权,获得一份股票,该组合的收益为:
(S0-C)×(1+r)-x=(20-3)×(1+0?1)-18=0?7
如果,St<x,不执行期权,通过市场买入一份股票,该组合的收益为:
(S0-C)×(1+r)-St≥(20-3)×(1+0?1)-18=0?7
式中C为买入期权的价格,t为期权的实效,x为期权中锁定的股票价格,r为同期无风险利率,S0为当前股票价格,St为期权到期后的股票价格。
因此,无论股价朝哪个方向运行,我们的策略都可以获得大于0?7的利润。所以这个期权的定价明显偏低。 绝对估值法的优点是,投资者可以将公司未来的收益体现到当前的股价之中;它的局限性是,无法准确预测公司未来盈利的波动性。
Q4:估值模型对实值期权的定价效果好为什么
网上内容,自己读下理解下你说的好坏
期权定价模型基于对冲证券组合的思想。投资者可建立期权与其标的股票的组合来保证确定报酬。在均衡时,此确定报酬必须得到无风险利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能获得超额回报(超过与风险相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。
B-S期权定价模型[3] (以下简称B-S模型)及其假设条件
5个假设
1、金融资产收益率服从对数正态分布;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
定价公式
C=S·N(D1)-L·E-γT·N(D2)
其中:
D1=1NSL+(γ+σ22)Tσ·T
D2=D1-σ·T
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=Er-1。例如r0=0.06,则r=LN(1+0.06)=0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
推导运用
(一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G]=E[max(ST-L,O)]
其中,E[G]—看涨期权到期期望值ST—到期所交易金融资产的市场价值
L—期权交割(实施)价
到期有两种可能情况:1、如果STL,则期权实施以进帐(In-the-money)生效,且mAx(ST-L,O)=ST-L
2、如果ST<>
max(ST-L,O)=0
从而:E[CT]=P×(E[ST|STL)+(1-P)×O=P×(E[ST|STL]-L)
其中:P—(STL)的概率E[ST|STL]—既定(STL)下ST的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C=P×E-rT×(E[ST|STL]-L)(*)这样期权定价转化为确定P和E[ST|STL]。
首先,
对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(ST)与现价(S)比值的对数值,即收益=1NSTS。由假设1收益服从对数正态分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以证明,相对价格期望值大于EμT,为:E[STS]=EμT+σT22=EμT+σ2T2=EγT从而,μT=T(γ-σ22),且有σT=σT其次,求(STL)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζχ]=1-N(χ-μσ)其中:ζ—正态分布随机变量χ—关键值μ—ζ的期望值σ—ζ的标准差所以:P=Pr06[ST1]=Pr06[1NSTS]1NLS]=1N-1NLS2)TTNC4由对称性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定STL下ST的期望值。因为E[ST|ST]L]处于正态分布的L到∞范围,所以,E[ST|ST]=S EγT N(D1)N(D2)
其中:
D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最后,
将P、E[ST|ST]L]代入(*)式整理得B-S定价模型:C=S N(D1)-L E-γT N(D2)(二)B-S模型应用实例假设市场上某股票现价S为 164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:
①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328
②求D2:D2=0.0328-0.29×0.0959=-0.570
③查标准正态分布函数表,得:N(0.03)=0.5120 N(-0.06)=0.4761
④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803
因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。
(三)看跌期权定价公式的推导B-S模型是看涨期权的定价公式。
根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:
S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T
移项得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,将B-S模型代入整理得:P=L E-γT [1-N(D2)]-S[1-N(D1)]此即为看跌期权初始价格定价模型。
发展
B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S- E-γT N(D1)-L E-γT N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004= 6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S E-δT N(D1)-L E-γT N(D2)
影响
自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步。
6二项式模型编辑
二项式模型的假设主要有:
1、不支付股票红利。
2、交易成本与税收为零。
3、投资者可以以无风险利率拆入或拆出资金。
4、市场无风险利率为常数。
5、股票的波动率为常数。
假设在任何一个给定时间,金融资产的价格以事先规定的比例上升或下降。如果资产价格在时间t的价格为S,它可能在时间t+△t上升至uS或下降至dS。假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价格下降至dS,期权价格也降至Cd。当金融资产只可能达到这两种价格时,这一顺序称为二项程序。
Q5:固定利率债券估值公式
债券价值计算公式是V=I*(P/A,i,n)+M*(P/F,i,n)
意思就是债券的价值是利息的折现加上到期本金的折现
因为利息按期支付,每期相等,所以I*(P/A,i,n)是利息乘以利率为i,期数为n的年金现值系数
本金到期一次支付,所以M*(P/F,i,n)是面值乘以利率为i,期数为n的复利现值系数
Q6:债券基金推荐哪个好 有哪些高收益债券基金推荐
这是债券基金进一年收益率排名前12的名单。
序号.基金代码.基金简称.日期.单位净值.累计净日增长近1周。近1月。近3月。近6月。近1年。近2年。近3年。今年来。成立来。自定义。手续费
1 002534 华安稳固收益 11-20 1.6090 1.6090 0.12% -0.12% 0.00% 0.31% 2.68% 44.69% --- --- 49.12% 46.94% 44.69% 0.08%
2 675043 西部利得合享 11-20 1.1535 1.1535 0.03% 0.07% 0.07% 0.73% 13.38% 14.98% --- --- 15.20% 15.35% 14.95% 0.00%
3 110027 易方达安心债 11-20 1.7120 2.5270 -0.29% -0.64% 1.72% 3.82% 11.68% 11.17% 10.95% 91.16% 14.98% 178.12% 10.88% 0.08%
4 110028 易方达安心债 11-20 1.6910 2.4860 -0.29% -0.65% 1.74% 3.74% 11.47% 10.74% 10.09% 89.17% 14.57% 172.34% 10.45% 0.00%
5 470058 汇添富可转换 11-20 1.5090 1.5790 1.21% 1.48% 6.19% 9.35% 19.19% 9.19% 4.00% 25.65% 16.35% 59.81% 9.11% 0.08%
6 470059 汇添富可转换 11-20 1.4710 1.5410 1.10% 1.45% 6.06% 9.12% 18.82% 8.72% 3.16% 24.34% 15.83% 55.92% 8.64% 0.00%
7 202101 南方宝元债券 11-20 2.0402 3.4202 0.50% -0.33% 1.25% 3.70% 8.15% 8.69% 11.09% 44.74% 10.06% 452.25% 8.61% 0.08%
8 630009 华商稳定增利 11-20 1.6220 1.6220 0.37% -0.92% 1.12% 1.76% 10.64% 8.57% 8.06% 30.70% 9.45% 62.20% 8.64% 0.08%
9 630109 华商稳定增利 11-20 1.5750 1.5750 0.32% -0.94% 1.09% 1.61% 10.45% 8.10% 7.14% 28.99% 9.07% 57.50% 8.10% 0.00%
10 100051 富国可转换债 11-20 1.6610 1.6610 -0.12% 2.98% 8.92% 8.00% 18.05% 8.07% 1.10% 70.88% 16.32% 66.10% 7.86% 0.08%
11 519162 新华信用增益 11-20 1.1660 1.3930 0.69% 0.43% 1.22% 2.19% 6.78% 7.94% 12.60% 18.09% 7.94% 40.64% 7.77% 0.08%
12 000536 前海开源可转 11-20 0.8750 1.2450 0.34% -0.23% 2.46% 5.68% 17.14% 7.89% 1.27% 7.70% 14.83% 24.93% 8.02% 0.08%
Q7:债券价值的计算
每期利息=1000X8%=80元
债券的价值=利息的现值+到期本金的现值
=80X(P/A,6%,5)+1000X(P/F,6%,5)
=1084.25>1050
价值大于当前价格,所以是值得购买的.
本文由锦鲤发布,不代表本站立场,转载联系作者并注明出处:/showinfo-2-171581-0.html