bs期权定价公式原理(请在充分理解BS期权定价公式)
内容导航:
Q1:根据Black-Scholes公式和看涨-看跌期权平价关系推导看跌期权的定价公式。
1、看涨期权推导公式:
C=S*N(d1)-Ke^(-rT)*N(d2)
其中
d1=(ln(S/K)+(r+0.5*б^2)*T/бT^(1/2)
d2=d1-бT^(1/2)
S-------标的当前价格
K-------期权的执行价格
r -------无风险利率
T-------行权价格距离现在到期日(期权剩余的天数/365)
N(d)---累计正态分布函数(可查表或通过EXCEL计算)
б-------表示波动率(自己设定)
2、平价公式
C+Ke^(-rT)=P+S
则P=C+Ke^(-rT)-S
=S*N(d1)-S - Ke^(-rT)*N(d2) + Ke^(-rT)
=S*[N(d1)-1] + Ke^(-rT)*[1-N(d2)]
=Ke^(-rT)*N(-d2) - S*N(-d1)
以上纯手工打字,望接纳,谢谢!
Q2:谁给我讲讲期货期权的BS定价公式
这个不是几句话能说明白了,老师讲课还要讲一会呢,所以还是弄本金融教材看看吧。你可以说说哪里看不懂,我看看能不能帮你
Q3:欧式期权定价原理
期权定价理论的应用前提是即期权的协定价格与该金融工具的即期价格或市场价格的差额,我在这里大概陈述一下期权价格理论。
期权价格决定理论,即期权定价模型。期权的价格是指在买卖期权中,合同买入者支付给卖出者的一定的费用。买入者因支付了期权费而获得了权利,卖出者因收取了期权费而承担了风险和责任。期权的价格由内在价格和时间价格两部分组成。期权的内在价格是期权本身所具有的价值,即期权的协定价格与该金融工具的即期价格或市场价格的差额。期权价格决定理论,正是定量地解决了期权如何定价的问题。它是由美国哈佛大学教授罗伯特·默顿和斯坦福大学教授迈伦·斯科尔斯创建的,这一理论为人们提供了非常实用的计算期权价格和控制投资风险的方法,因而1997获得年度诺贝尔经济学奖。
期权是指投资者拥有在特定时期以某种价格购买某种资产(包括投票)的权利。一般而言,在期权市场上有两种期权形式,一种是欧式期权,一种是美式期权。前者是指能在到期日执行的期权,后者是指在到期日之前任何一天均能执行的期权。目前,世界上最普遍使用的定价模式称为布莱克-斯科尔斯(Black-Scholes)(1973)欧式期权定价模式。虽然这个公式最初是在商标期权上使用,但现在同样用于其他期权。需要说明的是,这个公式只能用于计算看涨期权(Call Option)的价格,它的具体表示如下:
式中,S为即期价格(Spot Price);E为期权的协定价格(Exercise Price or Strike Price);C(E)为期权在规定协定价格情况下的期权价格,即期权费(Premium);e为自然对数的底的近似值2.71828;t为到期日以前的剩余时间,用年表示;ln(1+R)为复利计算的自然对数值,其中R是单利年利率,用小数表示;ln为自然对数;δ为即期价格的波动幅度;N(d)为对于给定变量d,服从平均值为0,标准差为1的标准正态分布N(0,1)的概率。这个公式的计算最好能使用计算机的程序。由于波动率δ可以通过历史数据进行,这样我们就可以算出无风险利率为R时的不支付红利股票欧式看涨期权的价格。对欧式看跌期权或美式期权而言,可以通过上述公式的变形而求得。
Q4:如何理解 Black-Scholes 期权定价模型
要区分BS Framework和BS Formula。重要的是这个Framework而不是定价公式本身。
事实上,课本上的内容与实际应用是完全脱节的。期权的价格并不是由BS Formula决定的,而是在满足无套利的情况下由供需决定(当然中央的决定权,唔,vol surface的形状也是很重要的)。
简而言之,BS Formula只是用来计算implied vol的,是个报价公式。
(随手一黑,很多期权交易员其实并不能完整写出BS Formula。)
BS最大的贡献其实是提供了另外一种对冲的思路——Greeks(B/S/M:做了一点微小的工作,谢谢大家)。没有BS Framework计算Greeks之前,交易员没有一种可以科学地计算风险敞口的方法,只能靠猜(heuristics是一种比较装逼的说法);或者用put-call parity,把option合成为forward然后再对冲掉。有了Greeks,交易员可以更好地对风险敞口进行分类。
。
Q5:谁给我讲讲期货期权的BS定价公式
这个不是几句话能说明白了,老师讲课还要讲一会呢,所以还是弄本金融教材看看吧。你可以说说哪里看不懂,我看看能不能帮你
Q6:求详细解释下面的股票期权激励计划中的BS模型公式
Φ()表示正态分布变量的累积概率分布函数
Q7:BS期权定价公式
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。
B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
本文由锦鲤发布,不代表本站立场,转载联系作者并注明出处:/showinfo-4-70257-0.html