证券组合期望收益率计算公式(证券组合β系数计算公式)
内容导航:
Q1:资产组合的预期收益率、方差和标准差是如何衡量和计算的?
任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。 作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。 如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下: 1。股票基金 预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11% 方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05% 标准差=14.3%(标准差为方差的开根,标准差的平方是方差) 2。债券基金 预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7% 方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67% 标准差=8.2% 注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下: 萧条:50%*(-7%)+50%*17%=5% 正常:50%*(12%)+50%*7%=9.5% 繁荣:50%*(28%)+50%*(-3%)=12.5% 则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9% 该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001% 该投资组合的标准差为:3.08% 注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。 投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。
Q2:期望收益率、方差、协方差、相关系数的计算公式
期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。这仅仅是一种期望值,实际收益很可能偏离期望收益。 HPR=(期末价格 -期初价格+现金股息)/期初价格
方差是各个数据与平均数之差的平方的平均数
比如1.2.3.4.5 这五个数的平均数是3
方差就是 1/5[(1-3)²+(2-3)²+(3-3)²+(4-3)²+(5-3)²]=2
协方差定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。
定义2:度量两个随机变量协同变化程度的方差。
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
编辑本段相关系数的计算公式
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为: 相关系数计算公式
[1]? r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方*∑(样子同上)(Yi-Y平均数)的平方 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为: 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。
Q3:给定市场组合的期望收益率为10%,无风险收益率为6%,证券A的贝塔系数为0.85,证券B的贝塔系数为...
证券市场线方程为E(r)=6%+β*(10%-6%)
即E(r)=0.06+0.04β
A的均衡期望收益率=6%+0.85*(10%-6%)=9.4%
B的均衡期望收益率=6%+1.2*(10%-6%)=10.8%
图自己画
Q4:如何计算证券组合的期望收益率?
由于期望收益率的计算与证券组合的相关系数无关,因此三种情况下的期望收益率是相同的,即期望收益率=16%*0.3+20%*0.7=18.8%
而标准差的计算则与相关系数有关:
1.完全正相关,即相关系数=1
标准差=(0.3*0.3*6%*6%+0.7*0.7*8%*8%+2*0.3*0.7*1*6%*8%)的1/2次方
2.完全负相关,即相关系数=-1
标准差=(0.3*0.3*6%*6%+0.7*0.7*8%*8%+2*0.3*0.7*(-1)*6%*8%)的1/2次方
3.完全不相关,即相关系数=0
标准差=(0.3*0.3*6%*6%+0.7*0.7*8%*8%+2*0.3*0.7*0*6%*8%)的1/2次方
Q5:贝塔系数如何计算???
贝塔系数的计算
贝塔系数利用回归的方法计算。贝塔系数为1即证券的价格与市场一同变动。贝塔系数高于1即证券价格比总体市场更波动。贝塔系数低于1(大于0)即证券价格的波动性比市场为低。
贝塔系数的计算公式
公式为:
其中Cov(ra,rm)是证券 a 的收益与市场收益的协方差;是市场收益的方差。
因为:
Cov(ra,rm) = ρamσaσm
所以公式也可以写成:
其中ρam为证券 a 与市场的相关系数;σa为证券 a 的标准差;σm为市场的标准差。
据此公式,贝塔系数并不代表证券价格波动与总体市场波动的直接联系。
不能绝对地说,β越大,证券价格波动(σa)相对于总体市场波动(σm)越大;同样,β越小,也不完全代表σa相对于σm越小。
甚至即使β = 0也不能代表证券无风险,而有可能是证券价格波动与市场价格波动无关(ρam = 0),但是可以确定,如果证券无风险(σa),β一定为零。
拓展资料
1、贝塔系数概述
贝塔系数(Beta Coefficient)是一种评估证券系统性风险的工具,用以度量一种证券或一个投资证券组合相对总体市场的波动性。在股票、基金等投资术语中常见。
贝塔系数是统计学上的概念,它所反映的是某一投资对象相对于大盘的表现情况。其绝对值越大,显示其收益变化幅度相对于大盘的变化幅度越大;绝对值越小,显示其变化幅度相对于大盘越小。如果是负值,则显示其变化的方向与大盘的变化方向相反;
大盘涨的时候它跌,大盘跌的时候它涨。由于我们投资于投资基金的目的是为了取得专家理财的服务,以取得优于被动投资于大盘的表现情况,这一指标可以作为考察基金经理降低投资波动性风险的能力。 在计算贝塔系数时,除了基金的表现数据外,还需要有作为反映大盘表现的指标。
2、贝塔系数应用
贝塔系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的“股性”。可根据市场走势预测选择不同的贝塔系数的证券从而获得额外收益,特别适合作波段操作使用。
当有很大把握预测到一个大牛市或大盘某个大涨阶段的到来时,应该选择那些高贝塔系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低贝塔系数的证券。
为避免非系统风险,可以在相应的市场走势下选择那些相同或相近贝塔系数的证券进行投资组合。比如:一支个股贝塔系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股贝塔系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。
贝塔系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对贝塔系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况.通常贝塔系数是用历史数据来计算的,而历史数据计算出来的贝塔系数是否具有一定的稳定性,将直接影响贝塔系数的应用效果。利用CHOW检验方法对我国证券市场已经实现股份全流通的上市公司进行检验后发现,大部分上市公司在实现股份全流通后,其贝塔系数并没有发生显著的改变,用贝塔系数进行系统风险的预测可靠性还是相当高的。
Q6:期望收益率、方差、协方差、相关系数的计算公式
期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。这仅仅是一种期望值,实际收益很可能偏离期望收益。 HPR=(期末价格 -期初价格+现金股息)/期初价格
方差是各个数据与平均数之差的平方的平均数
比如1.2.3.4.5 这五个数的平均数是3
方差就是 1/5[(1-3)²+(2-3)²+(3-3)²+(4-3)²+(5-3)²]=2
协方差定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。
定义2:度量两个随机变量协同变化程度的方差。
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
编辑本段相关系数的计算公式
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为: 相关系数计算公式
[1]? r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方*∑(样子同上)(Yi-Y平均数)的平方 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为: 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。
Q7:贝塔系数的计算
先算出各种资产的贝塔系数
再根据各种资产所占比例加权平均
本文由锦鲤发布,不代表本站立场,转载联系作者并注明出处:/showinfo-6-94784-0.html